Simulated surface potentials at the vapor-water interface for the KCl aqueous electrolyte solution.
نویسندگان
چکیده
Classical molecular dynamics simulations with polarizable potential models were carried out to quantitatively determine the effects of KCl salt concentrations on the electrostatic surface potentials of the vapor-liquid interface of water. To the best of our knowledge, the present work is the first calculation of the aqueous electrolyte surface potentials. Results showed that increased salt concentration enhanced the electrostatic surface potentials, in agreement with the corresponding experimental measurements. Furthermore, the decomposition of the potential drop into contributions due to static charges and induced dipoles showed a very strong effect (an increase of approximately 1 V per 1M) due to the double layers formed by KCl. However, this was mostly negated by the negative contribution from induced dipoles, resulting in a relatively small overall increase ( approximately 0.05 V per 1M) with increased salt concentration.
منابع مشابه
Vapor-Pressure Osmometry and Conductivity Determination of Salting-Out Effects in Aqueous Surface-Active Ionic Liquid 1-Dodecyl-3-methylimidazolium Bromide Solutions
Systematic studies on the vapor-liquid equilibria (VLE) and conductometric properties of aqueous solutions of model surface-active ionic liquid 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br) are performed in the absence and presence of a large series of electrolytes in order to achieve a deeper understanding about the molecular mechanism behind the specific salt effect on the aggregation be...
متن کاملPresence of electrolyte promotes wetting and hydrophobic gating in nanopores with residual surface charges.
Hydrophobic nanopores provide a model system to study hydrophobic interactions at the nanoscale. Such nanopores could also function as a valve since they halt the transport of water and all dissolved species. It has recently been found that a hydrophobic pore can become wetted i.e. filled with condensed water or an aqueous solution of salt when a sufficiently high electric field is applied acro...
متن کاملConstruction of Cu2+-selective electrode and thermodynamic study of the ternary aqueous mixed electrolyte system (CuCl2, KCl, H2O) using nanocomposite-based potentiometric sensor
A nanocomposite membrane Cu2+ ion-selective electrode has been constructed using a new compound ethyl 1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylat (ETMOC) as a neutral ionophore. The electrode works properly. It responds to Cu2+ ion with a sensitivity of 29.5 ± 0.2 mV/decade over the range 1.0 × 10−9 to 5.0 × 10−1M at p...
متن کاملConstruction of Cu2+-selective electrode and thermodynamic study of the ternary aqueous mixed electrolyte system (CuCl2, KCl, H2O) using nanocomposite-based potentiometric sensor
A nanocomposite membrane Cu2+ ion-selective electrode has been constructed using a new compound ethyl 1,2,3,4-tetrahydro-4-(4-methoxyphenyl)-6-methyl-2-oxopyrimidine-5-carboxylat (ETMOC) as a neutral ionophore. The electrode works properly. It responds to Cu2+ ion with a sensitivity of 29.5 ± 0.2 mV/decade over the range 1.0 × 10−9 to 5.0 × 10−1M at p...
متن کاملAn electrochemical quartz crystal impedance study on the rising of an aqueous solution meniscus for a partially immersed gold electrode during the electrochemical reduction of oxygen.
An electrochemical quartz crystal impedance system (EQCIS) was used to study the resonance behavior of an AT-cut 9-MHz piezoelectric quartz crystal (PQC) with its Au electrode partially immersed in KCl, Na2SO4 and NaClO4 aqueous solutions, respectively. An in situ determination of the immersed area and the height of the electrode was achieved by simultaneous measurements of the PQC electroacous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2006